
Using the mbind Tool for Pinning
Category: Process Pinning

Summary: The mbind utility is a "one-stop" tool for binding processes and threads for MPI
and OpenMP, and hybrid applications.

The mbind utility, developed at NAS, is used for binding processes and threads to CPUs. It
works for MPI, OpenMP, or MPI+OpenMP hybrid applications, and is available under
/u/scicon/tools/bin on Pleiades.

One of the benefits of mbind is that it relieves users from the burden of learning the
complexity of each individual pinning approach for associated MPI or OpenMP libraries. It
providing a uniform usage model that works for multiple MPI and OpenMP environments.

Currently supported MPI and OpenMP libraries are listed below.

MPI:

SGI-MPT•
MVAPICH2•
INTEL-MPI•
OPEN-MPI•
MPICH2•

OpenMP:

Intel OpenMP runtime library•
GNU OpenMP library•
PGI runtime library•
Pathscale OpenMP runtime library•

Use of mbind is limited to cases where the same set of CPU lists is used for all processor
nodes, and the same number of threads is used for all processes.

WARNING: Be aware that mbind may have issues when used together with other
performance tools, such as PerfSuite.

Syntax
#For OpenMP:
mbind.x [-options] program [args]

#For MPI or MPI+OpenMP hybrid which supports mpiexec:
mpiexec -np nranks mbind.x [-options] program [args]

Using the mbind Tool for Pinning 1

Information about all available options can be found in the text file
/u/scicon/tools/doc/mbind.txt on Pleiades.

Here are a few recommended mbind options:

-cs, -cp, -cc; or -ccpulist
-cs for spread (default), -cp for compact, -cc for cyclic; -ccpulist for process
ranks (for example, -c0,3,6,9). CPU numbers in the cpulist are relative within a
cpuset if present.
Note that the -cs option will spread the processes and threads among the physical
cores to minimize various resource contentions, and is usually the best choice for
placement.

-nn
Number of processes per node.

-tn
Number of threads per process. The default value is given by the
OMP_NUM_THREADS environment variable.

-vn
Verbose flag; print some useful information. [n] controls the level of details. Default is
n=0 (OFF).

Examples

For Pure OpenMP Codes Using Intel OpenMP Library

Sample PBS script:

#PBS -l select=1:ncpus=12:model=wes
#PBS -l walltime=0:5:0

module load comp-intel/11.1.072

cd $PBS_O_WORKDIR

mbind.x -cs -t4 -v ./a.out

The 4 OpenMP threads are spread (with the -cs option) among 4 physical cores in a node,
as shown in the application's stdout:

host: r211i0n5, ncpus 24, nthreads: 4, bound to cpus: {0,3,6,9}
The proper placement is further demonstrated in the output of the ps command below:

r211i0n5% ps -C a.out -L -opsr,comm,time,pid,ppid,lwp
PSR COMMAND TIME PID PPID LWP
 9 a.out 00:02:06 849 711 849
3 a.out 00:00:00 849 711 850

 3 a.out 00:02:34 849 711 851
 0 a.out 00:01:47 849 711 852

Category: Process Pinning 2

 6 a.out 00:01:23 849 711 853

Note that Intel OpenMP creates an extra thread, which is unknown to the user and does not
need to be placed. In this example, this extra thread (thread id 850) is running on the same
core (core 3) as thread 851. Since this extra thread does not do any work, it will not
interfere with the other threads.

For Pure MPI Codes Using SGI MPT

WARNING: mbind.x overwrites the placement initially performed by MPT's mpiexec. The
placement output from MPI_DSM_VERBOSE (if set) most likely is incorrect and should be
ignored.
Sample PBS script:

#PBS -l select=1:ncpus=12:model=wes

module load comp-intel/11.1.072
module load mpi-sgi/mpt.2.04.10789

#setenv MPI_DSM_VERBOSE

cd $PBS_O_WORKDIR

mpiexec -np 8 mbind.x -cs -n4 -v ./a.out

On each of the two nodes, 4 MPI processes are spread among 4 physical cores (0,3,6,9),
as shown in the application's stdout:

host: r213i2n12, ncpus 24, process-rank: 0, bound to cpu: 0
host: r213i2n12, ncpus 24, process-rank: 1, bound to cpu: 3
host: r213i2n12, ncpus 24, process-rank: 3, bound to cpu: 9
host: r213i2n12, ncpus 24, process-rank: 2, bound to cpu: 6
host: r213i2n13, ncpus 24, process-rank: 4, bound to cpu: 0
host: r213i2n13, ncpus 24, process-rank: 5, bound to cpu: 3
host: r213i2n13, ncpus 24, process-rank: 6, bound to cpu: 6
host: r213i2n13, ncpus 24, process-rank: 7, bound to cpu: 9

For MPI+OpenMP Hybrid Codes Using SGI MPT and Intel OpenMP

Sample PBS script:

#PBS -l select=2:ncpus=12:mpiprocs=4:model=wes

module load comp-intel/11.1.072
module load mpi-sgi/mpt.2.04.10789

#setenv MPI_DSM_VERBOSE

cd $PBS_O_WORKDIR

Category: Process Pinning 3

mpiexec -np 8 mbind.x -cs -n4 -t2 -v ./a.out

On each of the two nodes, the 4 MPI processes are spread among the physical cores. The
2 OpenMP threads of each MPI process run on adjacent physical cores as seen in the
application's stdout:

host: r215i2n12, ncpus 24, process-rank: 4, nthreads: 2, bound to cpus: {0-1}
host: r215i2n12, ncpus 24, process-rank: 6, nthreads: 2, bound to cpus: {6-7}
host: r215i2n12, ncpus 24, process-rank: 5, nthreads: 2, bound to cpus: {2-3}
host: r215i2n12, ncpus 24, process-rank: 7, nthreads: 2, bound to cpus: {8-9}
host: r215i2n11, ncpus 24, process-rank: 0, nthreads: 2, bound to cpus: {0-1}
host: r215i2n11, ncpus 24, process-rank: 2, nthreads: 2, bound to cpus: {6-7}
host: r215i2n11, ncpus 24, process-rank: 3, nthreads: 2, bound to cpus: {8-9}
host: r215i2n11, ncpus 24, process-rank: 1, nthreads: 2, bound to cpus: {2-3}

For MPI+OpenMP Hybrid Codes Using MVAPICH2 and Intel OpenMP

Sample PBS script:

#PBS -l select=2:ncpus=12:mpiprocs=4:model=wes

module load comp-intel/11.1.072
module load mpi-mvapich2/1.4.1/intel

cd $PBS_O_WORKDIR

mpiexec -np 8 mbind.x -cs -n4 -t2 -v ./a.out

#If you use mpirun_rsh instead of mpiexec
#use the following

mpirun_rsh -np 8 -hostfile $PBS_NODEFILE \
mbind.x -cs -n4 -t2 -v2 ./a.out

The application's stdout in this example is very similar to that in the previous MPT/Intel
OpenMP example.

For MPI+OpenMP Hybrid Codes Using Intel MPI and Intel OpenMP

The Intel MPI library automatically pins processes to CPUs to prevent unwanted process
migration. If you find that the placement done by the Intel MPI library is not optimal, you can
use mbind to do the pinning instead.

WARNING: Note that in order for mbind to work with the Intel MPI library, the internal
pinning mode of the library must be turned off explicitly by setting the environment variable
I_MPI_PIN to 0.
Sample PBS script:

Category: Process Pinning 4

#PBS -l select=2:ncpus=12:mpiprocs=4:model=wes

module load comp-intel/11.1.072
module load mpi-intel/4.0.2.003

setenv I_MPI_PIN 0

cd $PBS_O_WORKDIR

mpdboot --file=$PBS_NODEFILE --ncpus=1 --totalnum=`cat $PBS_NODEFILE | \
 sort -u | wc -l` --ifhn=`head -1 $PBS_NODEFILE` --rsh=ssh \
 --mpd=`which mpd` --ordered

mpiexec -ppn 4 -np 8 mbind.x -cs -n4 -t2 -v ./a.out

mpdallexit

For the above job, the following placement is seen in the application's stdout:

host: r215i2n11, ncpus 24, process-rank: 0, nthreads: 2, bound to cpus: {0-1}
host: r215i2n11, ncpus 24, process-rank: 1, nthreads: 2, bound to cpus: {2-3}
host: r215i2n11, ncpus 24, process-rank: 3, nthreads: 2, bound to cpus: {8-9}
host: r215i2n11, ncpus 24, process-rank: 2, nthreads: 2, bound to cpus: {6-7}
host: r215i2n12, ncpus 24, process-rank: 5, nthreads: 2, bound to cpus: {2-3}
host: r215i2n12, ncpus 24, process-rank: 4, nthreads: 2, bound to cpus: {0-1}
host: r215i2n12, ncpus 24, process-rank: 7, nthreads: 2, bound to cpus: {8-9}
host: r215i2n12, ncpus 24, process-rank: 6, nthreads: 2, bound to cpus: {6-7}

This can be confirmed by running the following ps command on the running nodes. For
clarity, the extra OpenMP threads created by the Intel OpenMP (which don't do any work)
are removed from the output.

r215i2n11% ps -C hybrid_intelmpi -L -opsr,comm,time,pid,ppid,lwp
PSR COMMAND TIME PID PPID LWP
 6 a.out 00:00:12 44698 44696 44698
 7 a.out 00:00:12 44698 44696 44715
 2 a.out 00:00:12 44699 44695 44699
 3 a.out 00:00:12 44699 44695 44711
 8 a.out 00:00:12 44700 44697 44700
 9 a.out 00:00:12 44700 44697 44713
 0 a.out 00:00:12 44701 44694 44701
 1 a.out 00:00:12 44701 44694 44717

If I_MPI_PIN is not set to 0 in the PBS script, then mbind.x prints out identical placement
results, as in the case where I_MPI_PIN is set to 0 but the ps command shows that some
OpenMP threads "step on" one another.

r215i2n11% ps -C hybrid_intelmpi -L -opsr,comm,time,pid,ppid,lwp
PSR COMMAND TIME PID PPID LWP
3 a.out 00:00:12 44185 44182 44185

 3 a.out 00:00:12 44185 44182 44198
 6 a.out 00:00:19 44186 44183 44186
 7 a.out 00:00:12 44186 44183 44202

Category: Process Pinning 5

9 a.out 00:00:12 44187 44184 44187
 9 a.out 00:00:12 44187 44184 44200
 0 a.out 00:00:19 44188 44181 44188
 1 a.out 00:00:12 44188 44181 44204

The mbind utility was created by NAS staff member Henry Jin.

Article ID: 288
Last updated: 08 Aug, 2012
Computing at NAS -> Best Practices -> Process Pinning -> Using the mbind Tool for
Pinning
http://www.nas.nasa.gov/hecc/support/kb/entry/288/?ajax=1

Category: Process Pinning 6

http://www.nas.nasa.gov/hecc/support/kb/entry/288/?ajax=1

	288.html

